
Development Procedures

Environmental Screening Tool – August 8, 2006 1

Section 1 Tracking Fixes and Enhancements

1.1 Introduction
The Environmental Screening Tool (EST) development team uses the Bugzilla software to report and track
bugs and requests for enhancements. This section provides an overview of how it is used in the EST
development work flow. More detailed information about Bugzilla and its user document are found in the
Bugzilla Guide available on the Bugzilla website at: http://www.bugzilla.org/

The ETDM Bugzilla page is found at: https://dev.fla-etat.org/bugzilla

A link to the ETDM Bugzilla page is also available on the EST dev site, in the left menu under Administration,
Developer Tools. Two products are currently tracked on the ETDM Bugzilla page:

1. ETDM-EST – the secure EST website
2. ETDM Public Access Site – the customized version of the EST available to the public through the

FDOT CEMO website

1.2 Definitions
The following definitions are used when reporting or updating a record in the Bugz illa software. These
definitions are copied here for easy reference from the on-line help at https://dev.fla-
etat.org/bugzilla/page.cgi?id=fields.html, with minor clarification as it relates to the EST.

Status and Resolution
The Status and Resolution fields used together define and track the life cycle of a bug. The following table
shows the combinations of Status and Resolution as used in the EST work flow.

 STATUS RESOLUTION

The status field indicates the general health of a
bug. Only certain status transitions are allowed.

The resolution field indicates what happened to
this bug.

NEW
This bug has recently been added to the
assignee's list of bugs and must be
processed. Bugs in this state may be
accepted, and become ASSIGNED,
passed on to someone else, and remain
NEW, or resolved and marked
RESOLVED.

ASSIGNED
This bug is not yet resolved, but is
assigned to the proper person. From here
bugs can be given to another person and
become NEW, or resolved and become
RESOLVED.

REOPENED
This bug was once resolved, but the
resolution was deemed incorrect. For
example, a bug is REOPENED when more
information shows up and the bug is now
reproducible. From here bugs are either
marked ASSIGNED or RESOLVED.

No resolution yet. All bugs which are in one
of these "open" states have the resolution
set to blank. All other bugs will be marked
with one of the following resolutions.

Development Procedures

Environmental Screening Tool – August 8, 2006 2

UNCONFIRMED (Not Used In EST)
This bug has recently been added to the
database. Nobody has validated that this
bug is true. Users who have the
"canconfirm" permission set may confirm
this bug, changing its state to NEW. Or, it
may be directly resolved and marked
RESOLVED.

RESOLVED
A resolution has been taken, and it is
awaiting verification by QA. From here
bugs are either re-opened and become
REOPENED, are marked VERIFIED, or
are closed for good and marked CLOSED.

VERIFIED
QA has looked at the bug and the
resolution and agrees that the appropriate
resolution has been taken. Bugs remain in
this state until moved to production, at
which point they become CLOSED.

CLOSED
The bug is considered dead, the resolution
is correct. Any zombie bugs who choose to
walk the earth again must do so by
becoming REOPENED.

FIXED
A fix for this bug is checked onto DEV and
tested.

INVALID
The problem described is not a bug.
(Usually for user error.)

WONTFIX
The problem described is a valid bug which
will never be fixed. (Do not use this
without prior authorization from FDOT.)

DUPLICATE
The problem is a duplicate of an existing
bug. Marking a bug duplicate requires the
bug# of the duplicating bug and will at least
put that bug number in the description field.

WORKSFORME
All attempts at reproducing this bug were
futile, and reading the code produces no
clues as to why the described behavior
would occur. If more information appears
later, the bug can be reopened.

MOVED (Not used in EST)
The problem was specific to a related
product whose bugs are tracked in another
bug database. The bug has been moved to
that database.

Severity
This field describes the impact of a bug.

Blocker Blocks development and/or testing work
Critical crashes, loss of data, severe memory leak
Major major loss of function
Minor minor loss of function, or other problem where easy workaround is present
Trivial cosmetic problem like misspelled words or misaligned text

Enhancement Request for enhancement

Priority
This field describes the importance and order in which a bug should be fixed. This field is utilized by the
programmers/engineers to prioritize their work to be done. The available priorities range from P1 (most
important) to P5 (least important.)

P1 – Highest priority, an error in the program that prevents a user from performing their job
P2 – Critical problem that makes using the application difficult to use, but hasn’t been reported by
a user
P3 – Minor problem with the functionality
P4 – Minor problem related to formatting or compliance with other GUI standard

Development Procedures

Environmental Screening Tool – August 8, 2006 3

P5 – Least important, usually an enhancement for which work has not begun

1.3 Work Flow
The following flow chart illustrates how Bugzilla fits in the EST development life cycle. Tasks are shown in
green, Bugzilla updates of status and resolution are shown in blueberry. Tasks shown in dark cyan are only
performed for enhancements.

Anyone on the development team may report a bug. The person who receives an assignment may re-
assign the bug to another person after discussing the assignment with that person.

Report a bug or
enhancement

Assign task to
developer

Evaluate

Bug can’t be
duplicated

Valid Bug

QA Review on
Stage

Migrate to
Production

Status = RESOLVED
Resolution = CLOSED

Enhancement

Status = NEW or REOPENED
Resolution = null

Status = ASSIGNED
Resolution = null

Status = RESOLVED
Resolution = WORKSFORME

Status = RESOLVED
Resolution = FIXED

Migrate to STAGE
and email testers

In case of emergency bug patch,
the FDOT application manager
may authorize a compressed

version of this workflow.

Status = RESOLVED
Resolution = VERIFIED

Document Requirements
and Develop on DEV

Fix on DEV

User testing for complex
enhancements, as

needed

Development Procedures

Environmental Screening Tool – August 8, 2006 4

Section 2 Version Control and Code Deployment

2.1 Introduction
The EST development team requires the ability to concurrently develop fixes and enhancements to the EST,
while at the same time:

• Eliminating conflicts with changes made by other members of the team

• Recovering previous revisions, for example previous stable releases

• Allowing quick deployment any revision to one of the EST development, staging, and production web
servers

Some of the software used to support these requirements are Apache ant, Subversion and TortoiseSVN.

Apache Ant is a Java build tool that is responsible for executing a series of interdependent tasks for building
the EST web application, for example updating the web site files from the team’s latest revisions, compiling the
Java files, and setting permissions on the web site files. More information about Apache Ant can be found at
http://ant.apache.org.

Subversion is an open-source version control system used by the EST development team to manage
concurrent development of the EST source code. A Subversion repository is a database of revisions to the
EST source code. The repository is accessible to the entire development team at the password-protected
address http://dev.fla-etat.org/svnweb. Subversion can be used from the command-line or from other
Subversion clients to interact with the repository, including such actions as:

• Accessing or downloading any previous revision of the source code

• Keeping the local working copy of source code in synch with repository

• Detecting and assisting with resolving conflicts between concurrently edited source code files

Subversion commands can be executed from the command line, or from Subverision clients such as
TortoiseSVN and TortoiseMerge. See http://tortoisesvn.tigris.org for details on installation and usage of these
clients.

2.2 Work Flow
The usage of Subversion by the EST development team follows an iterative development cycle, outlined in
steps 1-6 below. Unless otherwise noted, the steps are executed by an individual programmer. Note that all
Subversion (svn) commands shown can be substituted with equivalent steps in TortoiseSVN. In the case of
emergency bug fixes, an abbreviated version of this work flow may be authorized by the FDOT Application
Manager.

1) On a periodic basis, deploy latest development release candidate to remote development server for
testing. This step is executed at least once per cycle, and then repeated D minus 1 times after each
iteration of step 2, where D > 1

a. Tag development release candidate D.

i. svn copy file://var/www/fla-etat/svn/trunk file://var/www/fla-etat/svn/tags/P.0.D

b. Deploy release candidate P.0.D to remote development server using Apache ant. The working
copy of the development server should correspond to the trunk, so that a switch between tags
won’t be needed as this step is repeated

c. Test changes on remote development server, as necessary

Development Procedures

Environmental Screening Tool – August 8, 2006 5

d. Update Bugzilla, setting status and resolution as documented in Section 1

e. QA/QC by internal review team.

2) Develop latest fixes and enhancements. This step may be repeated indefinitely within a single
development cycle.

a. At the beginning of this step, the trunk is a copy of tag P.0.1, which represents the output of the
last step in the cycle (step 6)

b. Checkout, switch, or update working copy to trunk

i. svn checkout file://var/www/fla-etat/svn/branches/trunk .

ii. svn switch file://var/www/fla-etat/svn/branches/trunk .

iii. svn update .

c. Make changes to working copy files , as necessary per task requirements

i. Use any text editor or suitable Integrated Development Environment (IDE) of choice, for
example vim (Vi IMproved, a programmers text editor), IntelliJ IDEA, or Eclipse

d. Test changes on local development server, as necessary per task requirements

e. Update working copy, detecting out-of-date local files and conflicting changes

i. svn update .

f. Resolve conflicts, if any, using a merge program such as diff, TortoiseMerge, WinMerge, or a
suitable IDE.

g. Commit changes in working copy to trunk

i. svn commit . –message “<programmer comment on changes>”

h. Update Bugzilla, setting status and resolution as documented in Section 1

3) On a periodic basis, create and deploy the latest stable branch to remote staging server for testing and
bug fixes. This step is executed at least once per cycle, and then repeated S minus1 times after each
iteration of step 4, where S > 1

a. Copy latest development release candidate P.0.D to stable branch

i. svn copy file://var/www/fla-etat/svn/tag/P.0.D file://var/www/fla-etat/svn/branches/stable

b. Tag stage release candidate P.S.0.

i. svn copy file://var/www/fla-etat/svn/branches/stable file://var/www/fla-etat/svn/tags/P.S.0

c. Deploy release candidate P.S.0 to stage using Apache ant. The working copy of the staging
server should correspond to the stable branch, so that a switch between tags won’t be needed as
this following steps are repeated

d. Test changes on remote staging server, as necessary

e. Notify testers via e-mail to begin internal review

f. QA/QC by internal review team

g. Update Bugzilla, setting status and resolution as documented in Section 1

4) Fix bugs on stable branch. Repeat until appointed bug fix time has elapsed.

a. Checkout, switch, or update working copy to stable branch

i. svn checkout file://var/www/fla-etat/svn/branches/stable .

ii. svn switch file://var/www/fla-etat/svn/branches/stable .

Development Procedures

Environmental Screening Tool – August 8, 2006 6

iii. svn update .

b. Make changes to working copy files, as necessary per assigned bugs

i. Use any text editor or suitable Integrated Development Environment (IDE) of choice, for
example vim (Vi IMproved, a programmers text editor), IntelliJ IDEA, or Eclipse

c. Test changes on local development server, as necessary

d. Update working copy, detecting out-of-date local files and conflicting changes

i. svn update .

e. Resolve conflicts, if any, using a merge program such as diff, TortoiseMerge, or WinMerge

f. Commit changes in working copy to stable branch

i. svn commit . –message “<programmer comment on changes>”

g. Update Bugzilla, setting status and resolution as documented in Section 1

5) On a periodic basis, roll up latest stable branch to production for release. This step is executed at least
once per cycle, and then repeated R minus1 times after each iteration of step 6, where R > 1

a. Copy latest stable release candidate P.S.0 to tagged release R.0.0, where R = P+1

i. svn copy file://var/www/fla-etat/svn/tags/P.S.0 file://var/www/fla-etat/svn/tags/R.0.0

b. Deploy release candidate R.0.0 to remote production server

i. Use ant switch –Dtag=R.0.0

c. Update Bugzilla, setting status and resolution as documented in Section 1

6) Prepare for next development iteration.

a. Merge latest production release R.0.0 with development trunk, storing result in working copy

i. svn merge file://var/www/fla-etat/svn/tags/R.0.0 file://var/www/fla-etat/svn/trunk .

b. Resolve conflicts, if any, using a merge program such as diff, TortoiseMerge, or WinMerge

c. Commit changes in working copy to development trunk

i. svn commit . –message “<programmer comment on changes>”

d. Tag new development trunk release R.0.1

i. svn copy file://var/www/fla-etat/svn/trunk file://var/www/fla-etat/svn/tags/R.0.1

e. Deploy new development trunk release R.0.1 to development server using Apache Ant. The
working copy of the development server should correspond to the trunk, so that a switch between
tags won’t be needed as this following steps are repeated

Section 3 Internal Testing

3.1 Identify Fixes or Enhancements for Testing
1. In Bugzilla, select bugs where Status = RESOLVED and Resolution = FIXED or WORKSFORME.

For example, to test on the secure EST site use the following steps in Bugzilla:
o Select Search, click on the Tab for Advanced Search
o Status = Resolved
o Product = ETDM-EST
o Use the other options to narrow the search, if needed

Development Procedures

Environmental Screening Tool – August 8, 2006 7

2. All bugs with Status = RESOLVED and Resolution = FIXED or WORKSFORME are ready for
testing on DEV.

3. After an email notification indicates that STAGE deployment is complete, these bugs may be
tested on STAGE.

3.2 Selecting Accounts and Projects
1. Test Accounts
Select an account from the list of test accounts. Each account has different privileges and
accessibility throughout the ETDM system. When following the testing procedure, be sure to test
utilizing various accounts. This allows you to make sure access is being granted properly to
whatever is being tested. Administration >> View Page Permissions contains information regarding
access granted to specific roles.

2. Projects
You can test using already existing projects [on stage and dev] or you can create a new project.
Utilize the new search button in the upper right hand corner to search for existing projects.

a. Search: If you already have a project in mind to use, select manual search. If you
want to search by using criteria, select “power search” and select the criteria
pertinent to what you will be testing. “Power search” will allow you to select projects
according to planning organization, status within the ETDM process, phase of the
ETDM process, etc. When using the “power search”, it is important to make
selections to narrow down your search as oppose to leaving all fields at “All.”
Otherwise, the program will attempt to select all projects in the system which will
take an extended amount of time.

b. Create New Project:
1. Select the Create New Project wizard.
2. Project Name = Name, Test, Date
3. Planning ID = Any Letter
4. Planning Organization = May Vary
5. ETDM Phase = May Vary
6. County = Within Planning Organization
7. Beginning Location = A
8. Ending Location = B
9. Consistency = Make Any Selection
10. Purpose and Need = Test
11. Project Description = Test
12. Summary of Public Comment = Test
13. Select and Mode and Alternative Type
14. FIHS = Y or N
15. Total Length = Any Number
16. Total Cost = Any Number
17. Beginning Location = A
18. Ending Location = B
19. Go To Tools >> Maintain Project Diary >> Add Alternative Description

Complete All Fields and Submit
20. Wizards >> Update EDTM Project

Complete All Fields and Submit

3.3 Testing
1. Test the Page

a. Enter information in all fields; submit
b. Enter information in some fields, but not all; submit
c. Leave all fields blank; submit

Development Procedures

Environmental Screening Tool – August 8, 2006 8

d. Enter incorrect values in fields; submit

2. After Testing the Page
a. Check to see that information has been recorded in any corresponding reports(s).
b. Check to see that information has been recorded in any corresponding tool(s).
c. Check to see if information can be edited.

3. Spot Check

Test to make sure other functionality has not been affected. Do this by checking things such as
unrelated tools or reports used throughout the life cycle of a project. Also, check things listed under
accounts and help.

3.4 Reporting To Bugzilla
1. Search Bugzilla to check that the bug has not already been reported. You can do this by doing a

search and entering relevant keywords. This search should be done with open and closed bugs
2.
3. Indicate your findings in the comments section. If you experience the same bug or something new,

be sure to reopen the bug. List the page, any selection criteria used on the page, and the username
of the test account. Include all steps you went through to generate that bug. If it is an error, copy and
paste the error message into the comments section.

4.
5. If the bug is verified fixed, the QA/QC representative sets the bug status to VERIFIED. Other testers

should indicate successful resolution in the comments section.

